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EQUATION OF STATE TAKING THE FEATURES OF THE INTERNAL ENERGY 

INTO ACCOUNT AND BASED ON THE SATURATION LINE 

E. S. Platunov, V. F. Lysenkov, 
N. V. Vas'kova, and A. V. Shustrov 

UDC 536.71 

A method of constructing the equation of state, based on the use of thermodynamic 
relations between the internal energy of the material and its thermal parameters, 
is presented. 

At present, the construction of a single (for liquid and gas) equation of state is sub- 
jected to the condition of describing not only the thermal parameters of the material, but 
also the caloric data with an accuracy close to that of experiment. However, in most works 
[i, 2] the question of the qualitative and quantitative account of the thermal and caloric 
properties in the near-critical regions has been left out of consideration. In [3], on the 
basis of an analysis of the possibility of using a virial equation of state to describe the 
thermodynamic properties of argon, it was shown that the structure of the virial equation 
does not allow the thermal data and the isochoric specific heat in the critical region to be 
generalized with sufficient accuracy. The boundaries of the region in which the virial equa- 
tion of state cannot be used were established: T = TC+0.1 TC, p = pC+ 0.4PC �9 

If the equation of state is to permit calculations of the thermal and caloric properties 
over a broad range of parameters of state, including the near-critical region, it is evident- 
ly necessary to assign the equation a form that takes account of the features of the material's 
behavior in the vicinity of the critical point. An attempt to solve this problem was made in 
[4]. But the equation of state constructed in [4] does not agree at all accurately with the 
conclusions of scale theory [5], requiring, in particular, divergence of c V on approaching 
the critical point along the critical isotherm according to the law (I--T/Tc)-a , whereas the 
value of the critical index is, as shown by subsequent calculations [6], ~ = 0.108+- 0.010. 

In the present work a method of constructing the equation of state of liquid and gas is 
proposed, taking account of the features of the behavior of c V in a broad range of parameters 
of state, including the near-critical region. 

The well-known thermodynamic relation, in differential form, between the thermal parame- 
ters of the material and its internal energy u is used: 

c~u " 

OV- 

C h o o s i n g  some r e f e r e n c e  c u r v e  T r e ( p )  a t  t h e  t h e r m a l  s u r f a c e ,  Eq. (1)  i s  i n t e g r a t e d :  
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p(p, T) -- Are(P)--9~ f T " , T z 
Tre(P) 

(2) 

Here Are(P) is a "constant" of integration, equal to the ratio between the pressure and the 
temperature along the reference curve: Are(O) = [p/T]re. 

The saturation line TS(P) is used as the reference curve. In this case Eq. (2) yields 

P(9, T)-- ps(Ts) T--p~T ~ T ~ 
Ts (o) 

TS (p) 
(3) 

If the equation of state is to allow both the thermal data and the isochoric specific 
heat to be calculated with acceptable accuracy (even in the near-critical region), the form 
of the expression for the internal energy u(p, T) must take account of the features of both 
the thermal surface and c V over the whole of the given range of parameters of state, includ- 
ing the near-critical region. The internal energy may be expressed as the sum of three terms: 

u (p, T) = ulG(T) q- u R (P, T) + u I (9, T). (4) 

As w i l l  be made c l e a r  by the  f o l l o w i n g ,  UR(P , T) may be e x p e d i e n t l y  w r i t t e n  i n  the  form: 
uR(P, T) = U~R(P) + UaR(P, T) ,  where the  f i r s t  term i s  a f u n c t i o n  s o l e l y  o f  the  d e n s i t y .  

The c o n s t r a i n t  imposed on the  component o f  the  i n t e r n a l  ene rgy  u I ( p ,  T) i s  t h a t  i t  must  
d e s c r i b e  the  i r r e g u l a r  b e h a v i o r  o f  the  i s o c h o r i c  s p e c i f i c  h e a t  cv c l o s e  to t h e  c r i t i c a l  p o i n t .  
A n a l y s i s  of  p r e c i s i o n  d a t a  on the  i s o c h o r i c  s p e c i f i c  h e a t  o f  a rgon  [7] l e a d s  to the  f o l l o w i n g  
e x p r e s s i o n  f o r  the  i r r e g u l a r  component of  the  i n t e r n a l  e n e r g y :  

ui(9, T )=[ I (9 ) (1  TI(9)) 1-= T " ( 5 )  

An expression for c v is found from Eq. (4): 

Cv(9, T).-= dulo(T) -k ( au2R(9, T) ) + ( a u i ( p ,  T ) )  IG R , I ' ---- Cv (T) q- cv(p, T) ~-  Cv(p, T). (6) 
dT OT , p OT p 

According to Eq. (5), the irregular component of the isochoric specific heat is 

I ( Ou I (p, T) I fl (P)TI (p)(1--~) 
Cv (9, T) = -- TI, (9))d--" 

aT , p T ~ ( 1 T 
(7) 

Assuming p = PC in the last relation, the behavior of c$ at the critical isochore is in- 
vestigated: 

iT (p0 T~ (Pc) (I - ~) I 
cv (Pc' T) = 

TZ( 1 T I ( 9 0 )  c ~ T  (8) 

If the function Tl(P) is required to satisfy the condition TI(P C) = TC, then as T+T C 
it is obvious that Eq. (8) yields: c~(PC, T§ C) ~AT -s , i,e., the structure of the expression 
for the internal energy ensures divergence of the isochoric specific heat at the critical 
point. 

If the equation of state constructed by the proposed method is to give both the thermal 
surface of the material and the caloric properties in quantitatively correct form, then the 
choice of the structure of the functions fl(P), TI(P), UR(P, T) must be based on the analysis 
both of P--V--T data and the caloric properties. In the present work, in order to simplify the 
analysis of the general possibilities of the given method, a simplified approach is used in 
searching for the form of the given functions (which is known to reduce the accuracy of the 
equation of state constructed). The functional form of fl(P), TI(P), and u~R(P, T) is chosen 
according to the results of analyzing the cv(P, T) dependence. Thereafter, the equation of 
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state is constructed and, from an analysis of the thermal surface, the form of the function 
u:R(P) is specified; this function appears in the equation of state but not in Eq. (6) for c V. 
This search procedure for the structure of the functions fi(p), TI(#), u2R(p, T), and uIR(P) 
was realized for argon, taken as the example for which the quantitative possibilities of the 
given method were investigated. As is known, in this case uaR(P, T) may be represented in 
the form 

U~R(p, T) -- - -  q~p, fR(p)-~-- 1 +  ; / ~ R ( p ) = Z A I  , 
�9 i = l  

where A = 25~ ~2R = 3.3465"i06; AI = 1.0; A2 =--1.33553; Aa = 0.76133; Aa = 
--0.29198; As = --0.08359; A6 = -0.01194. Then the following expressions are obtained for the 
internal energy u(p, T) and the isochoric specific heat c V from Eqs. (4)-(9): 

%RfR(P) { 1 +  A ~ qoi{ 1 p 2 TI(p) 1-c~ 
-- -- I-- I , (i0) 

T Po T 
9 

q)i(1--:(z) (1 -- p -TI (9) 
9o 

= c  v + %RfR(P)-~-(  1 +--~--)  + Cv (P, T) IG 1 2A 
T z {i TI (9) c~ (ii) 

< T 

The function fi(p) is approximated by the expression ~i(l-p/po) 2 here. The values of the 
constants ~I and Po are taken to be as follows: ~I = 300 kJ/kg, Po = 1.870"103 kg/m ~. The 
critical index ~ is taken to be 0.112, in accordance with the data of [6]. Substituting Eq. 
(i0) into Eq. (3) gives the equation of state 

Ts Ts 

where 
T 2 A ' 

F (o, T) = 
2[++ 

F2(x) = 90 

The functions U,R(p), TI(Q) and also TS(P) and Ps(Ts) appearing in Eqs. (ii), (12) remain 
structurally indeterminate. 

As already noted, the form of TI(P) is chosen on the basis of analyzing the cV(P, T) 
dependence in the present simplified approach [7]. The function TI(P) must then satisfy the 
following requirements: i) TI(P C) = T C, which, as noted, ensures divergence of c V at the 
critical point; 2) Ti(P§ = 0, ~len, in Eqs. (i0), (ii), the transitions, in the limit, to 
the corresponding expressions valid for an ideal gas are rigorously observed: cv(P + 0, T) = 
cSG(T), u(p+0, T) = UIG(T); 3) as follows from Eq. (12), the following inequality must be 
observed for an arbitrary value of the density: Ti(P) ~Ts(P); 4) the function TI(P) should 
not have singularities in the given range of densities from 0 to P~r' including the near- 
critical region. This condition is satisfied by the function 

(9) = Tc p exp {-- Ap + B~Ap ~ @ B~Apa}. (13) 
Pc 

The constants B~ and B~ are assumed to be: B~ = 0.47; B~ = --1.57; B7 = 0.50; B; : 0.60. In 
accordance with [6], the critical parameters are taken to be T C = 150.66~ PC = 0"5351"103 
kg/m 3. The relation used for UiR(P, T) in the present work is 

u,a(p) = % R Z D i  
i=! \ pC / (14) 

where D, =--160.53; D2 = 3.34435-103; Da = --1.6501"104; D4 = 1.9410"104; D5 = --3.0278"103; 

D6 = --7.7017 "10=. 

Now consider TS(P) and Ps(Ts). In accordance with scale theory [5], in the asymptotic 
vicinity of the critical point the temperature dependence of the density at the saturation 
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line is written in the form Ap = H]ATIB sign (Ao). Therefore, in describing experimental 

data at the saturation line for TS(P) , the following relation may be used: TS(P) = TC(I + 
C~IApII/~-~ C~Ap~). Analysis of the experimental data for argon permits the following rela- 

h~4 

tion to be written for the description of the saturation line: 

Ts (p) = T C (1 + C~ IAPI ~/2 § C~ Ap~ § C~Ap,o), (15) 

where C B = --29.1117; C~ = 7.64; C~o =--0.03; C~ = --5.3122; C~o = 21.58; B = 0.3514. 

In approximating the elasticity line, it must be understood that in accordance with 
scale theory, the second derivative d2ps/dT~ at the critical point is singular. This require- 
ment, e.g., is satisfied by the equation of the elasticity curve proposed for argon in [8]: 

lg ps(Ts) ( E t - - l g p c )  + E2T~ I + E3Ts+E~(Tc--Ts) ~ +E~T~, 
Pc (16) 

where E1 = 1 .83977;  E2 =-435 .070~ E3 = 2 . 8 3 0 6 2 " 1 0 - 2 ~  E, = 3 . 5 4 7 9 5 . 1 0 - " ~  E5 = 
- - 4 . 4 9 1 0 1 . 1 0 - 7 ~  s = 1 .90798 .  

Thus,  a l l  o f  the  p a r a m e t e r s  a p p e a r i n g  i n  e q u a t i o n  o f  s t a t e  (12) have been  d e t e r m i n e d ,  
and t h e r e  i s  the p o s s i b i l i t y  o f  e s t i m a t i n g  the  a c c u r a c y  of  the  e q u a t i o n  o f  s t a t e  c o n s t r u c t e d  
i n  c a l c u l a t i n g  the  t he rm a l  p a r a m e t e r s  and i s o c h o r i c  s p e c i f i c  h e a t .  In  the  f i r s t  c a s e ,  the  
compar i son  i s  w i t h  the  e q u a t i o n  of  s t a t e  o f  [3] and a l s o  w i t h  the  e x p e r i m e n t a l  d a t a  used as 
the basis in determining the coefficients of this equation; in the second case, it is with 
the experimental data on c V from [7] and the same equation of [3]. 

Calculation of c V from Eq. (ii) shows that the mean-square deviation 6c~ in the whole of 
the parameter range considered in [7] is not more than 4.5%. The maximum deviation of the 
results calculated for c V from the experimental values is observed on the p = 0.3096 g/cm 3 
isochore, but is not more than 10%. As a comparison, note that in calculating c V from the 
virial equation of state [3], the deviation from the experimental result amounts to 100% and 
more over a broad region in the vicinity of the critical point. In addition, it is important 
to stress two factors. First, Eq. (12) ensures that the isochoric specific heat tends to 
infinity as T+ T C along the critical isochore according to the law (I--T/Tc)-~ , which agrees 
with the conclusions of scale theory [5, 6]. Second, the structure of functions ~R(p), 
U~R(p) , and TI(P) is such that in Eqs. (i0), (ii) transition occurs to the corresponding 
relations for an ideal gas. 

Before discussing the accuracy of equation of state (12) in thermal calculations, note 
the following. The fact that the saturation line is used as the reference curve allows two 
important problems to be solved. On the one hand, in this case, the problem of consistency 
of the data in single-phase space and at the saturation line is automatically solved. The 
use of the equation for TS(P) in the form in Eq. (13) allows the features of the thermal sur- 
face of the material in the near-critical region to be more accurately taken into account 
than in the case of the virial equation. On the other hand, as may readily be shown, the 
structure of Eq. (12) guarantees the satisfaction of the critical conditions P(PC, TC) = PC' 
(~p/8~)$ = 0, (~2p/~p2)~ = 0. One other point may be noted. The region of definition of Eq. 
(2) with respect to the density evidently coincides with the region of definition of the 

,! T 
reference curve. Hence, Eq. (12) is defined in the density range Ptr~ P ~Ptr" 

However, in the present work, the equation of state of argon in the form in Eq. (12) was 
constructed in the narrower density range 0.035 g/cm 3 ~ O < 1.02 g/cm s. The lower limit of 
this range is determined by the boundary of the range of application of equation TS(p) for 
the saturation line. The choice of the upper limit is associated with the use of a simplified 
procedure in seeking the coefficients of Eq. (12), where some of the structural functions -- 
TI(P), fR(P), fl(P) -- were determined solely on the basis of a mass of c V data. For argon 
there are only reliable data on c V for densities less than 1.02 g/cm 3. 

Calculation of the thermal parameters of argon in the single-phase region and comparison 
of the results with experimental data shows that, on average, the deviation 6p in the given 
range of parameters of state is 1.1%. Hence, in the accuracy of calculating the density in 
the region of the single-phase state, the equation constructed is inferior to the analytical 
equation of state of [3]. However, if the simplification of the approach to finding the co- 
efficients of Eq. (12) and the small number of fitting parameters of Eq. (12) in comparison 
with the equation of [3] are taken into account, the result obtained here may be regarded as 
satisfactory. 
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Fig. i. Description of the meta- 
stable states using Eq. (12): i-i) 
isotherm T = TI obtained from Eq. 
(12); 2-2) liquid--vapor equilibrium 
line; 3-3) spinodal; 4-4) line 

Pi(V) = p(v, T = Ti(v)) ; Ps(TI) is 
the saturation pressure at tempera- 
ture TI. p, Pa; v, m3/kg; T, ~ 

In calculating the density at the saturation line from the virial equation of [3], the 
deviation from the experimental data rises on approaching the critical point, and reaches 
tens of percent and above. In the case of the procedure proposed here, the accuracy of the 
equation obtained in calculating the density at the saturation line is determined by the 
accuracy of the expression for TS(P). If Eq. (15) is used for TS(P) , the mean-square devia- 
tion ~pm is not more than 0.35% over the whole of the density range considered, including 
the near-critical region. 

Before obtaining the basic conclusions, the question of the possibility of describing 
the region of metastable states by means of the equation obtained may be considered. In Fig. 
1 an arbitrary isotherm T = TI (in the projection on the p--v plane) obtained from Eq. (12) is 
shown. It is evident that the spinodal obtained from Eq. (12) -- (~p/~v) T = 0 -- lies between 
the liquid--vapor equilibrium line PS(V) and the line Pi(V) = p(v, Ti(v)). Thereby, Eq. (12) 
depicts the form of the dependence p(p, T) in the region of metastable states qualitatively 
correctly. Consideration of the quantitative prospects for description of the metastable 
region using Eq. (12) falls outside of the scope of the present work. 

Thus, the approach considered in the present work permits, in principle, the construc- 
tion of an equation of state of gas and liquid, which, in contrast to the analytical equa- 
tions of state, more strictly depicts the features of the critical region. In particular, 
the equation constructed in this way gives a qualitatively correct depiction of the singular 
character of the isochoric specific heat in the vicinity of the critical point. This, in 
turn, means that the equation constructed leads to satisfactory accuracy in calculating Cv, 
both in the regular part of the surface and in the critical region. 

Increase in the accuracy of the approach proposed here in calculating the thermal data 
will in the future be associated with the perfection of the structure of the expression for 
the internal energy and with optimization of the search for the set of coefficients of the 
equation of state. 

NOTATION 

p, pressure; T, absolute temperature; v, specific volume; p, density; PC, TC, PC, vc, 
critical parameters; Ap = (p--0c)/Pc; AT = (T--Tc)/Tc: e, B, critical indices of the isochoric 

IG specific heat and the saturation line, respectively; cv(p, T), cw (T), isochoric specific 
heat of real material and ideal gas; c~(p, T), c$(p, T), regular'and irregular components of 
the isochoric specific heat; u(p, T), uIG(T), specific internal energy of a real material and 
an ideal gas; uR(P , T), ui(P, T), regular and irregular components of the internal energy; 
Tre(P) , equation of reference curve; Ts(P) , saturation line; Ps(Ts), elasticity curve; 

! 

~R(P), fI (p)' TI(P), structural functions of the internal energy; ~(p), f~(p), TI(P), de- 
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rivatives of the corresponding functions with respect to the density; P~r' Ptr' vapor and gas 
density at triple point; ~c V = (c~alc--c~XP)/c~XP; ~p = (pcalc--peXp)/pexp; ~T, ~R, ~2R, Po 

+ + v V v ~ ' 

Ai, Di, Ei, BI, C~, constants corresponding to the cases p ~ PC (+) and p < PC (-)" 
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DIFFUSIONAL EXTRACTION OF MATERIAL FROM MODEL 

POROUS BODIES 

R. Rakadzhiev, N. V. Pavlyukevich, 
A. Trifonov, S. Radev, 
R. Kuzmanova, and B. Nikolova 

UDC 532.72:541.182 

The solution and diffusional extraction of solid materials from porous membranes 
is investigated theoretically and experimentally. 

The extraction of materials from porous bodies is widespread in commercial technology 
and in nature: the separation of inorganic and organic products in porous catalysts, the 
leaching out of mineral salts, the extraction of oil from cells of plant origin, hydrometal- 
lurgical treatment, etc. Similar subjects were investigated, e.g., in [1-3]. However, in 
describing these processes, mass transfer in a single capillary is most often considered, 
with a specified density of the solute at the exit, or the mass transfer in the solution and 
diffusional extraction in a porous body and outside it is not investigated in a consistent 
formulation. In the present work, results are given of experimental and theoretical inves- 
tigations of the successive processes of solution of a solid material and its diffusional ex- 
traction from model porous membranes, the capillaries of which are entirely filled with ma- 
terial in the form of a solid phase or solution. A mathematical model of the above-noted 
processes is proposed in the form of a refined version of that described in [4]. 

As follows from [5], reflective spectroscopy, based on the phenomenon of attenuation of 
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